DOCTORAL THESIS
SUMMARY

Total hip arthroplasty in developmental hip dysplasia. Technical improvement possibilities.

Scientific Coordinator:
Acad.Prof.Univ.Dr. Nicolae Gorun

PhD Candidate:
Dr. Emil Mares

Craiova, 2011
PART A. GENERAL 9
Introduction and brief history 10

CHAPTER 1. Descriptive data about coxofemoral joint anatomy .. 13
1.1. General data 13
1.2. Coxofemoral joint, hip joint or thigh joint (coxa = thigh) (articulatio coxae) 13
1.2.1. Articular surfaces are placed in cotiloid cavity and on femoral head................................. 13
1.2.1.1. Cotiloid cavity or acetabulum 13
1.2.1.2. Femoral head (caput femoris) 15
1.2.2. Means of union 16
1.2.2.1. Joint capsule 16
1.2.2.2. Pericapsular ligaments 17
1.2.2.3. Round ligament of the femoral head (ligamentum capitis femoris) 19
1.2.2.4. Coxofemoral synovium 20
1.2.2.5. Hip ratios ... 20
1.2.2.6. Other anatomical factors 22
1.2.2.7. Vascularization and innervation about hip joint 23

CHAPTER 2
Functional structures and coxofemoral joint biomechanics .. 25
2.1. Functional structures 25
2.2. Hip muscular system.. 26
2.3. Movements 31

CHAPTER 3
The histology of coxofemoral joint structures .. 36

CHAPTER 4
Coxofemoral osteoarthritis classification 40
4.1. Etiological classification 40
4.2. Anatomopathological classification 41

CHAPTER 5
Hip osteoarthritis pathogenesis .. 42
5.1. Theory of circulatory origin 42
5.2. Osteochondral Theory (Axhausen) 42
5.3. Vascular theory (Harrison-Trueta) 42
5.4. Vascular theory (Arlet, For the Inter, Durieu) 43
5.5. Mecanofunctional Theory (Pommer and Lang) 43
5.6. Mechanical theory (Pauwels, Freeman) 43
5.7. Synovium Theory 43
5.8. Chemoenzymatic Theory (Vignon and is the Inter) 43
9.1. Early complications .. 79
9.1.1. Systemic complications .. 79
9.1.1.1. Intra-and postoperative mortality 79
9.1.1.2. Pulmonary complications ... 79
9.1.1.3. Cardiac complications ... 79
9.1.1.4. Renal and urinary complications 79
9.1.1.5. Gastrointestinal complications 79
9.1.2. Local complications .. 79
9.1.3. Fatty embolism ... 80
9.1.4. Thrombophlebitis ... 80
9.1.5. Intraoperative complications .. 80
9.1.6. Neurovascular complications .. 80
9.2. Late complications ... 81
9.2.1. Heterotopic ossification .. 81
9.2.2. Local malignant ... 82
9.2.3. Femoral stress fracture ... 82
9.2.4. Degradation of prosthetic parts .. 82

CHAPTER 10
Principles of treatment in coxarthrosis .. 83
10.1. Prophylactic treatment ... 83
10.2. Conservative treatment ... 84
10.3. Surgery ... 88
10.3.1. General data ... 88
10.3.2. Tenotomy ... 90
10.3.3. Osteotomy ... 90
10.3.3.1. Intertrohanterian oblique osteotomy with internal translation
femoral shaft ... 90
10.3.3.2. Varus osteotomy (Pauwels I) 92
10.3.3.3. Valgus osteotomy (Pauwels II) 92
10.3.3.4. Arthroplasty .. 93
10.3.3.5. Indications and contraindications of total arthroplasty 97

PART B. PERSONAL ... 101
CHAPTER 11
Current Location of the intertrohanterian oblique medialisation osteotomy in hip osteoarthritis
treatment.......................... 102
11.1. General data ... 102
11.2. Surgical Technique .. 103
11.3. Discussion ... 105
11.4. Results ... 109
CHAPTER 12
Total hip arthroplasty in secondary congenital dysplastic hip ... 114

12.1. General data ... 114
12.2. Therapeutic Consequences ... 117
12.3. Casuistry .. 120
12.4. Discussion ... 123
12.5. Clinical Cases ... 128

CHAPTER 13
Statistical study of hip arthroplasty loosening over a period of 10 years (2001-2010) 134

13.1. General data ... 134
13.2. Total hip prosthesis revision causes 137
13.3. Personal statistical study .. 141
13.4. Pathophysiology of total hip prosthesis loosening - anatomoclinical forms.......................... 144
13.4.1. Metal particles .. 149
13.4.2. Cement (Polymethyl methacrylate).............................. 150
13.4.3. Particle size (dimensions) ... 151
13.4.4. Particle concentration .. 151
13.4.5. Particles nature ... 152
13.4.6. Particle Shape ... 153
13.4.7. Biological factors in wear particles disease 153
13.4.8. Local and systemic reactions in the presence of polyethylene particles 154
13.4.9. Cellular and molecular mediators of local and systemic reactions to wear particles 155
13.4.10. Biological markers (immunological) of the process of wear and aseptic loosening 163
13.4.11. Wear particles products .. 163
13.4.12. Markers reflecting the biological consequences of wear particles disease 164
13.4.13. Systemic dissemination of wear particles 164
13.4.14. Clinical and radiological examination 166
13.4.15. Revision Objectives .. 170

C. EXPERIMENTAL STUDY WITH FINITE ELEMENTS METHOD 171

CHAPTER 14
An experimental study with finite elements method .. 172

14.1. General data ... 172
14.2. Material and Methods .. 175
14.2.1. Material .. 175
14.2.2. Numerical calculation methods 176
14.2.2.1. Kinematic method (Runge-Kutta algorithm) 176
14.2.2.2. Finite element method ... 177
14.2.3. Generated three-dimensional mathematical models 179
14.2.3.1. Three-dimensional geometrical models of the coxofemoral joint .. 179
14.2.3.1.1. Three-dimensional geometrical model of the coxofemoral joint for the kinematic model 179
14.2.3.1.2 Three-dimensional geometrical model for the finite elements model of the normal coxofemural articulation 186
14.2.3.1.3. Three-dimensional geometric model for the finite elements model of the dysplastic coxofemoral articulation with coxa valga subluxans 191

14.3. Kinematic model of the coxofemoral joint 197

14.4. Finite elements model of normal coxofemoral joint ... 203

14.5. Finite elements model of the coxofemural dysplastic joint with coxa valga subluxans 211

14.6. Properties of used material ... 219
14.6.1. Properties of material used in the kinematic study 219
14.6.2. Properties of material used in experimental study with finite elements method 219

CHAPTER 15
Boundary conditions applied. Experimental results 221

15.1. Kinematic Study .. 221
15.1.1. Boundary conditions applied .. 221
15.1.2. Kinematic survey results ... 221

15.2. Experimental study with finite elements 232
15.2.1. Boundary conditions applied ... 232
15.2.2. Results .. 233
15.2.2.1. Coxofemoral normal joint ... 233
15.2.2.2. Coxofemural dysplastic joint... 243

General Conclusions ... 254

Bibliography .. 261

Key words: hip osteoarthritis, dysplasia, osteotomy, tenotomy, arthroplasty, revision, loosening, wear particles disease.
A. General section:
Introduction and brief history.

Hip osteoarthritis is a chronic degenerative disease of the adults and represents 90% of the hip affections.

He is characterized by destructive lesions of the articular cartilage, associated with destructive and proliferative lesions of the subcondral bone tissue.

Chapter I:

The coxofemural joint is the link between the coxal bone and the pelvic member and it is a perfect spherical joint with 3 movement axis and is very important for statics and movement. The iliofemoral ligament (Bertin) has a triangular shape and is composed of two parts: an oblique one and a vertical one. He is the strongest ligament of the coxofemoral joint and he can support up to 350-500 kg.

Chapter II:

The movements around the hip are: flexion, extension, abduction, adduction and internal and external rotations.

Chapter IV:

Classification

Etiological, the hip osteoarthritis are primitives and secondary. The hip dysplasia is included among the secondary ones.

Chapter VI:

The pain is the main symptom that brings patient to the doctor and also, the most important factor that convinced the patient and the doctor to operate that hip. The limp (with positive Trendelenburg sign), the
vicious attitude (in flexion, adduction and external rotation) are also important signs that lead us to positive diagnose of hip osteoarthritis.

Chapter VII:

The radiographic diagnoses of the hip dysplasia most used includes: the femoral head coverage angle <20 °; the acetabulum inclination angle >10-12°; the interruption of the cervico-obturator line (Shenton); the dynamic radiological test of femoral head centrage.

Chapter X:

The treatment in hip osteoarthritis includes: tenotomy, osteotomy (medialisation, varus, valgus) and, finally, when all other resources are exhausted, total hip arthroplasty.

B. Personal part:

Chapter XI:

In this chapter I discuss about the benefits of the McMurray oblique medialisation osteotomy who, in very well designed cases can give a good relief and mobility of the hip, even for 12-15 years or so. The indication is for a painful hip but with a good flexion of minimum 60° and a minimum abduction of 25°. In association with a varus intertrohanterian osteotomy, it gives the best results.

Chapter XII and XIII are about the primary arthroplasty for hip dysplasia (20 cases between 2001-2010) and revision arthroplasty in 25 cases, between 2001 – 2010, what were the causes and how I manage to solve the problems occurred during the operation.

Also, I treated the physiopathology of the aseptic loosening of hip arthroplasty, with wear particles disease as the main pathogenically
cause of this. The experimental part has three models for the right coxofemurale hip, the kinematic one, in four positions, the finite elements one for a normal coxofemurale joint and for a dysplastic one, the third model.

The Bertin ligaments were taken into account in tension at first and then without tension, and we could see how the pression about the femur (proximal part) and acetabulum decreases when the ligament was decontracted, a good point of view for the operations that decreases the tensions about the acetabulum and femoral head, for a longer salvation of the local cartilage.

C.V.

EMIL MAREŞ
Date of birth: 13.08.1963
Address: 13 Pictor Nicolae Grigorescu Blvd, Bucharest
Mobile: 0722829979
Email: emilmares@yahoo.com

GRADUATE TRAINING

University of Medicine, Bucharest 1982-1988
Specialist in Orthopaedics and traumatology-2000
Research worker: 2004; Emergency Universitary Hospital ELIAS
Senior Doctor: 2005
Doctorand

SCIENTIFIC ACTIVITIES
- published abstracts-2
- scientific communications-2
- published papers-3
- courses attended-2
- research activity-1 research project (member in the research team)

AFFILIATED ASSOCIATIONS

- Romanian Society of Orthopaedics and Traumatology (S.O.R.O.T.)
- International Society of Orthopaedics and Traumatology (S.I.C.O.T.)

Foreign Languages
English: written-read-spoken
French: written-read-spoken
German: written-read