UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA
PhD SCHOOL

PhD THESIS

THE STUDY OF THE ACTION OF CYTOTOXIC COMPOUNDS ON TUMOR CELLS USING MATHEMATICAL MODELS

ABSTRACT

PhD COORDINATOR:
Prof. univ. dr. DRICU Anica

PhD STUDENT:
BRÎNDUŞA Corina

CRAIOVA
2016
TABLE OF CONTENTS

INTRODUCTION

STATE OF KNOWLEDGE
1. CURRENT APPROACHES REGARDING THE ACTION OF DRUGS USED IN THE TREATMENT OF GLIOBLASTOMA

1.1. Malignant Glioma: General knowledge
1.2. The relationship between drugs used in oncological treatment and tumor cells
1.3. Major guidelines for the association of chemotherapeutic drugs
1.4. The major compounds planned to be used in research

2. MATHEMATICAL MODELING AND ANALYSIS OF THE ACTION OF CYTOTOXIC AGENTS ON TUMOR CELLS IN VITRO
2.1. General considerations. The MATLAB tool with the Simulink extension for the development of numerical simulation models
2.2. The insertion of analytical models describing the evolution of the proliferation rate and doubling time of the tumor cell proliferation process
2.3. The insertion of an analytical model for quantifying the action dose – response type of an cytotoxic agent on tumor cells
2.4. The insertion of an analytical model for quantifying the synergistic action of two or more cytotoxic agents on tumor cells.

PERSONAL CONTRIBUTIONS (EXPERIMENTAL STUDY)

3. OBJECTIVES OF THE STUDY

4. MATERIALS AND METHODS
4.1. Materials
4.2. Cells and cell cultures. Treatment protocols
4.3. Determination of cell viability
4.3.1. Hemocitometry
4.3.2. MTT assay
4.3.3. Cells counting in designated areas
4.4. Determination of IC$_{50}$

4.5. The development of a mathematical model describing the evolution of the proliferation rate and the doubling time respectively, in the tumor cell proliferation process

4.6. The development of a mathematical model based on the specific transfer function of a dose – response action type of a drug on tumor cells in vitro

4.7. The development of a mathematical model based on the first order transfer function specific to the synergistic action of two drugs on tumor cells

4.8. Meta-analysis study of the survival gain in patients with recurrent malignant glioma undergoing treatment with a cytotoxic agent in comparison to an immunotherapeutic treatment

5. RESULTS

5.1. The evolution of the proliferation rate and doubling time of glioblastoma cells based on the simulation model MS: DT / PR

5.2. The investigation of the dose – response type of action of a single cytotoxic agent on glioblastoma cells in vitro based on the simulation model MS: f$_n$(D/IC$_{50}$)

5.2.1. The investigation of the dose – response type of action of SU 1498 and AG 1433 inhibitors on the GB10B cell line based on the simulation model MS: f$_n$(D/IC$_{50}$)

5.2.2. The investigation of the dose – response type of action of the inhibitor imatinib on the GB10B cell line based on the simulation model MS: f$_n$(D/IC$_{50}$)

5.2.3. The investigation of the dose – response type of action of the alkylating agent temozolomide on the GB10B cell line based on the simulation model MS: f$_n$(D/IC$_{50}$)

5.3. The investigation of the synergistic dose – response type of action of temozolomide in association with imatinib on glioblastoma cells in vitro based on the numerical simulation model MSS: f$_n$(D/IC$_{50}$) with the establishment of a calculated optimum dosage for the drugs

5.4. Survival gain analysis of patients with recurrent malignant glioma after immunotherapeutic treatment with dendritic cells compared to the combined treatment with bevacizumab and irinotecan. Meta-analysis study.

6. DISCUSSIONS

7. CONCLUSIONS

8. REFERENCES

Key words: mathematical model, MATLAB Simulink, synergistic action; cytotoxic compounds, glioblastoma.
STATE OF KNOWLEDGE

In order to increase the effectiveness of chemotherapeutic treatment, based on the association of cytostatic compounds, the drug / tumor cells experiment plays an important role, under strict laboratory conditions. The estimation of dose – effect type reports regarding the action of an oncological drug on tumor cells leads to relevant conclusions in establishing the optimal medication specific to the chemotherapeutic act. The identification of the optimal association between cytotoxic agents is very important, based on experiments on cell lines with regards to cellular kinetics.

In this study, mathematical modeling and the analysis of the action of cytotoxic compounds on tumor cells in vitro focuses on:

- the development of analytical models describing the evolution of the proliferation rate (PR) and the doubling time (DT) respectively, in the tumor cell proliferation process; Studies point out that the exposure of tumor cells to a cytotoxic drug should be carried out in the exponential growth phase, (this requirement is not fully fulfilled in medical practice);

- the development of an analytical model for quantifying the dose – response type of action of one or more cytotoxic agents on glioblastoma (GB) tumor cells. The establishment of mathematical models which describe the dose-response type of action of the association of two or more cytotoxic agents on tumor cells in vitro, is very important. In the theoretical analysis of the synergistic action the identification and usage of the combination index (CI) is of high importance.

- the role of the MATLAB tool along with the Simulink extension in the development of numerical simulation models.

PERSONAL CONTRIBUTIONS (EXPERIMENTAL STUDY)

The study achieved the following objectives:

- **Objective no. 1** – The study of PR and of DT respectively, on GB cell lines and the numerical simulation using mathematical models that describe the evolution of these parameters in the cell proliferation process.

The numerical simulation using mathematical models describing the evolution of PR and DT respectively in the cell proliferation process, on the GB3B, GB4B, GB5B, GB9B and GB10B cell lines represents a major advantage in establishing a treatment scheme based on a cytotoxic drug. The numerical simulation model generates specific graphics and provides access to data sets with statistical significance.
- Objective no. 2 – The investigation of the individual action of tyrosine kinase inhibitors (SU 1498, AG 1433, Imatinib (IMT)) and of the alkylating agent Temozolomide (TMZ) on GB cells in vitro using a numerical simulation model. The cell line on which the individual action of tyrosine kinase inhibitors and of TMZ was studied is GB10B.

The biomedical experiment that reflects the dynamic evolution of tumor cell fraction depending on the ratio between D/IC$_{50}$ (the dose of a cytotoxic compound / the dose that produces the median effect on GB cells), can lead to the development of a mathematical model, based on the transfer function.

- Objective no. 3 – The evaluation of synergistic dose – response action type in vitro between the alkylating agent TMZ and the tyrosine kinase inhibitor IMT with the establishment of an optimum dosage (OP) for the drugs based on numerical simulation model.

The combination of the two therapeutic agents (TMZ + IMT) may allow the use of lower doses of these substances, which induces a cumulatively cytotoxic effect on the tumor cells.

The development of a numerical simulation model allows the evaluation of the synergistic action of these compounds based on the D/IC$_{50}$ ratio with the determination of an OP for the drugs.

The above mentioned objectives have been achieved based on the numerical simulation models built using the MATLAB specialized tool with the Simulink extension.

- Objective no. 4 – Meta-analysis study concerning the survival gain of patients with recurrent malignant glioma following immunotherapeutic treatment with dendritic cells in comparison with combined treatment with bevacizumab and irinotecan.

An analysis of the published data on PubMed, Cochrane Library, Web of Science, ScienceDirect and EMBASE was performed in order to identify studies with patients who received bevacizumab plus irinotecan or therapy with dendritic cells for the treatment of recurrent malignant gliomas.

MATERIALS AND METHODS presents the materials used in the study and their origins and how they are implemented within the Objectives 1, 2, 3, 4. Thus, reference is made to the cell culture medium, the cell growth determination kit MTT, the fetal bovine serum (FBS), antibiotics, trypsin, phosphate-buffered saline (PBS) which are used in the study. Also, the tyrosine kinase inhibitors SU 1498, AG 1433, IMT and the alkylating agent TMZ were used in the study.

In order to implement Objective no. 1 cell lines derived from GB were used: GB3B, GB4B, GB5B, GB9B and GB10B. The GB10B cell line was used to implement Objective no. 2 and Objective no. 3.
In this chapter the following steps are presented:

- The development of the mathematical models describing the evolution of the PR and the DT in the tumor cell proliferation process;
- The development of the mathematical model based on the transfer function specific to the dose – response type of action of a cytotoxic agent on tumor cells in vitro;
- The development of a mathematical model based on the transfer function specific to the dose – response type of action of two cytotoxic agents on tumor cells in vitro;
- Research methods, Eligibility criteria, Statistical processing applied to the meta-analysis study that evaluates the patients with recurrent malignant glioma undergoing a treatment with cytotoxic agents compared to patients undergoing immunotherapy with dendritic cells.

RESULTS AND DISCUSSIONS

- The evolution of PR and DT on GB lines based on the simulation model MS: DT / PR

The mathematical model describing the DT based on \(n \) data pairs, \((t_1, N_1); (t_2, N_2), \ldots, (t_n, N_n)\) is given by the equation:
\[
DT = \sum_{i=1}^{n-1} DT_i (N_{i+1} - N_i) / \sum_{i=1}^{n-1} (N_{i+1} - N_i).
\]

The mathematical model describing PR based on \(n \) data pairs, \((t_1, N_1); (t_2, N_2), \ldots, (t_n, N_n)\) is:
\[
PR = \ln 2 \left[\sum_{i=1}^{n-1} (N_{i+1} - N_i) \right] / \left[\sum_{i=1}^{n-1} DT_i (N_{i+1} - N_i) \right]
\]

The **MS: DT/PR** numerical simulation model is based on the mathematical model which describes DT and the mathematical model that describes PR. **MS: DT/PR** includes: Math Function blocks; arithmetic operations blocks; Scope DT(N/N_1) block; Scope PR(N/N_1) block, etc.. The numerical simulations were performed on a ACER Aspire S3 type PC equipped with an Intel Core i3, 1.8 GHz processor.

For the GB3B, GB4B, GB5B, GB9B and GB10B cell lines the average values for DT and PR were determined based on the **MS: DT / PR** simulation model and using the online algorithm: http://www.doubling-time.com.

Determining the mean DT values and the mean PR values is important for the implementation of a treatment scheme which is based on the action of a cytostatic drug: \(DT_{GB9B} = 2.281 \) < \(DT_{GB3B} = 2.3953 \) < \(DT_{GB4B} = 2.4820 \) < \(DT_{GB5B} = 2.6993 \) < \(DT_{GB10B} = 3.573 \). The cells belonging to GB9B line proliferate with a DT of 2.281 days; the GB10B cells proliferate with a DT of 3.573 days; the GB3B cells proliferate with a DT of 2.3953 days; GB4B cells proliferate with a DT of 2.482 days DT; the cells belonging to GB5B line proliferate with a DT of 2.6993 days. DT determined for GB10B cells is 21 hours longer than DT determinated for GB5B cells, 26.1 hours longer than DT determinated for
GB4B cells, 28.3 longer hours than DT determined for GB3B cells and with 31 hours longer than DT determined for GB9B cells, respectively.

The study highlights average values of PR for the GB3B, GB4B, GB5B, GB9B and GB10B cell lines.

Low values for DT and high values for PR indicate an intense cell proliferative activity. Medium values for both DT and PR indicate a moderate cell proliferative activity. High values for DT and low values for PR indicate a reduced cellular proliferative activity.

The determination method of DT and of PR based on the MS: DT / PR simulation model is fast and does not require a complex laboratory technique. This method involves a calculation technique using a PC with medium specifications and has software specialized in numerical simulations based on mathematical models. The method is addressed to biomedical investigations that monitor cellular kinetics.

- The investigation of the individual dose – response action type in vitro for cytotoxic compounds on GB10B based on the MS: \(f_n(D/IC_{50}) \) simulation model.

The dose – response action type, \(f_n(D/IC_{50}) \), of certain cytotoxic substances on a tumor cell line can be described based on the mathematical model reformulated in real field:

\[
f_n = L^{-1} \left((K_1 - K_2) \cdot \frac{W}{W \cdot s + 1} \right) + L^{-1} \left(K_2 \cdot \frac{1}{s} \right)
\]

with the argument \((D/IC_{50} / D / IC_{50}) \), \((D \geq D_0) \).

Using MATLAB Simulink a numerical simulation model was built: MS: \(f_n(D/IC_{50}) \). The dose – response action type of SU 1498, AG 1433, IMT and of the alkylating agent TMZ on GB10B can be numerically simulated with MS: \(f_n(D/IC_{50}) \), with the implementation of Objective no. 2. Numerical simulations were performed on an ACER Aspire S3 type PC.

A semnificative example of application of the MS: \(f_n(D/IC_{50}) \) simulation model is the dose - response action type for IMT on the GB10B cell line. The main values resulted from the simulation on MS: \(f_n(D/IC_{50}) \) are presented in the Tables below.

Table. The D–f_n type values resulted by numerical simulation on MS: D/ IC₅₀ ∈ [0.7, 1.5]

<table>
<thead>
<tr>
<th>MS: fn(D/ IC<sub>50</sub>)</th>
<th>D – f<sub>n</sub> type values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D/IC<sub>50</sub>)</td>
<td>0.7</td>
</tr>
<tr>
<td>(D)_{IMT} (µM)</td>
<td>8.48</td>
</tr>
<tr>
<td>(f<sub>n</sub>)_{IMT}</td>
<td>66.88</td>
</tr>
</tbody>
</table>

* common values of the simulation process / experiment are highlighted

Table. The D–f_n type values resulted by numerical simulation on MS: D/ IC₅₀ ∈ [1.6, 2.4]

<table>
<thead>
<tr>
<th>MS: fn(D/ IC<sub>50</sub>)</th>
<th>D – f<sub>n</sub> type values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D/IC<sub>50</sub>)</td>
<td>1.6</td>
</tr>
<tr>
<td>(D)_{IMT} (µM)</td>
<td>19.38</td>
</tr>
<tr>
<td>(f<sub>n</sub>)_{IMT}</td>
<td>29.78</td>
</tr>
</tbody>
</table>

* common values of the simulation process / experiment are highlighted

6
The f_n series of the values generated by the numerical simulation on the MS: f_n(D/IC_{50}) model are quite different from the f_n values resulted in the dose – response action type in vitro experiment using a cytotoxic substance on GB10B cells. This observation outlines the need to validate the MS: f_n(D/IC_{50}) numerical simulation model based on the distribution of residual data (errors) and based on the correlation between the data series.

- Investigation of the synergistic dose – response action type in vitro for TMZ in association with IMT on the GB10B based on the numerical simulation model MSS: f_n(D/IC_{50}).

Investigation of the dose – response action type of the TMZ and IMT association on GB10B with the implementation of Objective no. 3, can be achieved on the MSS: f_n(D/IC_{50}) numerical simulation model built using the specialized softwear MATLAB Simulink.

The MSS:f_n(D/IC_{50}) simulation model provides significant data for the numerical simulation process specific to the synergistic action of TMZ + IMT on tumor cells derived from the GB10B line. The resulted values are presented in the Table below.

<table>
<thead>
<tr>
<th>MSS: fn(D/ IC_{50})</th>
<th>D-f_n type values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D/IC_{50})</td>
<td>1</td>
</tr>
<tr>
<td>(D)_{IMT} (μM)</td>
<td>12.11</td>
</tr>
<tr>
<td>(D)_{TMZ} (μM)</td>
<td>141.58</td>
</tr>
<tr>
<td>(f_n) IMT</td>
<td>0.5</td>
</tr>
<tr>
<td>(f_n) TMZ</td>
<td>0.5</td>
</tr>
<tr>
<td>(f_n) C</td>
<td>0.5</td>
</tr>
</tbody>
</table>

The study confirms, based on the MSS: f_n(D/IC_{50}) model using the CI values, the synergistic action type. In the case of the synergistic effect, CI has the following values CI = 0.94; 0.83; 0.64, (CI < 1) correlated with the f_n = 0.12; 0.11; 0.1 values. It is considered that (f_n = 0.1, CI=0.64) indicates a strong synergism for TMZ + IMT association on GB10B line.

Using MSS: f_n(D/IC_{50}) enables the reduction of the drug dosage by the synergistic action of two drugs on a tumor cell line. It is a known fact that a substance becomes toxic for the body if it exceeds its specific critical dose. Because of (D')_{IMT} << (D)_{IMT} and (D')_{TMZ} << (D)_{TMZ} it is highly probable for the incidence of individual toxic effects for each agent to be greatly diminished in the body while having a reduced incidence for adverse effects in the case of synergistic action of TMZ in association with the IMT inhibitor.

It is a known fact that the standard treatment for advanced cancer is based on the combined therapy of more than one cytotoxic drug belonging to different classes. It is very important to determine the optimum dosage for the drugs, which is based either on medical practice or on calculation algorithms provided by specialized medical clinics.
The conclusions of the study, on one hand reflect the importance that must be given to determining the dosage values of drugs inducing the median effect (IC_{50}) and on the other hand they reflect the need to build numerical simulation models types such as MSS: $f_{n}(D/IC_{50})$, allowing the establishment of a treatment protocol with the identification of a calculated optimum dosage.

- The analysis of the survival gain of patients with recurrent malignant glioma after the immunotherapeutic treatment with dendritic cells compared to the combined treatment with bevacizumab and irinotecan. Meta-analysis study.

Regarding the patients with GBM undergoing treatment with bevacizumab plus irinotecan seven clinical studies were identified. The total number of patients was 302 with ages ranging between 18 and 79 years. After the treatment the values of mOS were between 7 and 16.25 months. The values of predicted mOS were between 4.44 and 13.74 months.

In the case of the patients with GBM undergoing immunotherapy with dendritic cells seven clinical studies were identified. The total number of patients was 80 with ages ranging between 24 and 74 years. After the treatment the mOS values were between 7.5 and 34 months. The values of predicted mOS were between 11.39 and 35.12 months.

CONCLUSIONS

Study 1. The construction of the MS: DT / PR numerical simulation model based on the specialized software MATLAB with the Simulink extension allows the simulation of the evolution of PR and DT on GB3B, GB4B, GB5B, GB9B, GB10B tumor cell lines derived from GB.

The establishment of the specific value sets for DT and PR belonging to the cellular exponential growth phase is important for the development of a treatment protocol that allows the testing of the sensitivity of tumors to different cytostatic compounds in vitro.

Study 2; 3; 4. The dose – response action type of a cytotoxic compound on GB cells in vitro can be studied on a numerical simulation model built with the specialized software MATLAB with the Simulink extension.

The simulation model MS: $f_{n}(D/IC_{50})$ allows the numerical simulation of the f_{n} evolution in the dose – response action type for several concentrations of SU 1498, AG 1433, IMT and TMZ on the GB10B cell line.

The MS: $f_{n}(D/IC_{50})$ model allows the generation of $f_{n}(D/IC_{50})$ graphics and the display of numerical data depending on the D/IC$_{50}$ ratio in the case of SU 1498, AG 1433, IMT inhibitors or in the case of the alkylating agent TMZ through the specialized Scope $f_{n}(D/IC_{50})$, Dy:f_{n}, Dy:D/IC$_{50}$ blocks.
Study 5. The synergistic dose – response action type of the combination of two drugs TMZ + IMT *in vitro* can be studied based on the MSS: \(f_n(D/IC_{50}) \) numerical simulation model built with the MATLAB Simulink tool.

The MSS: \(f_n(D/IC_{50}) \) model becomes a laboratory tool that allows the generation of graphics specific to \(f_n \) depending on the \(D/IC_{50} \) ratio results specific to the alkylating agent TMZ, to the inhibitor IMT and to the TMZ + IMT association respectively. MSS: \(f_n(D/IC_{50}) \) allows the determination of the CI index.

The analytical formula of CI leads to the observation that a synergistic action exists for an agent \(i \) if the dose \((D_i)^* \), which in combination with another agent produces an \(f_n \) value in the system, it is at most half the dose \((D_i) \) which individually produces the same value of \(f_n \) in the system.

In the case of the used mathematical model importance should be given, on one hand, to the determination of the values of cytotoxic compounds that induce the median effect \((IC_{50}) \) and on the other hand to the necessity of building numerical simulation type models MSS: \(f_n(D/IC_{50}) \), models that allow the establishment of a dose – response type treatment protocol based on the indentification through simulation of a calculated optimum dosage \(OP[D/IC_{50}; (f_n)_m] \).

Study 6. The meta-analysis study enabled us to draw the conclusion: for the patients with recurrent malignant gliomas, the immunotherapeutic treatment with dendritic cells did not have a noticeably different effect compared to the combined treatment of bevacizumab and irinotecan, proving once again that combined treatments are efficient for patients with malignant diseases.

SELECTED REFERENCES

Chou JH. Quantitation of synergism and antagonism of two or more drugs by computerized analysis, in Synergism and Antagonism in Chemotherapy (Chou TC and Rideout DC), Academic Press New York 1991; 223-244.

Chou TC. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res 2010; 70: 440-446.

